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Abstract—While most techniques of reversible data hiding in encrypted images (RDH-EI) are developed for uncompressed images,
this paper provides a separable reversible data hiding protocol for encrypted JPEG bitstreams. We first propose a JPEG encryption
algorithm, which enciphers an image to a smaller size and keeps the format compliant to JPEG decoder. After a content owner uploads
the encrypted JPEG bitstream to a remote server, a data hider embeds an additional message into the encrypted copy without
changing the bitstream size. On the recipient side, the original bitstream can be reconstructed losslessly using an iterative recovery
algorithm based on the blocking artifact. Since message extraction and image recovery are separable, anyone who has the embedding
key can extract the message from the marked encrypted copy. Experimental results show that the proposed method outperforms a
previous work in terms of separation capability, embedding capacity and security.

Index Terms—Reversible data hiding, information hiding, image recovery, JPEG encryption
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1 INTRODUCTION

SIGNAL processing in encrypted domain (SPED) for pri-
vacy preserving has attracted considerable research

interests in recent years [1]. In cloud computing and dele-
gated calculation, users who are unwilling to reveal con-
tents of the original signal may send an encrypted copy to a
remote server. The server has to accomplish signal process-
ing in the encrypted domain [2]. Many approaches have
been proposed for different applications, for example, com-
pressing encrypted images [3], signal transformation in
ciphertexts [4], pattern recognition in encrypted domain [5],
watermarking in encrypted multimedia [6], data searching
in encrypted dataset [7], etc. Reversible data hiding in
encrypted images (RDH-EI) is another topic of SPED [8].

RHD-EI allows a server to embed additional message
into an encrypted image uploaded by the content owner,
and guarantees that the original content can be losslessly
recovered after decryption on the recipient side. Generally,
reversibility is closely related to the embedding payload.
If the original image can be losslessly recovered when the
payload does not exceed the achievable capacity, we say it
is reversible. Meanwhile, RDH-EI protocols are always
designed for natural images. Since a natural image always
contains large smooth areas, i.e., redundancies, one can
embed data into the original image and losslessly recover it
[8], [9], [10], [11], [12], [13], [14], [15], [14], [17], [18], [19],
[20], [21], [22]. Unlike robust watermarking, reversible data

hiding are widely used when perfect image reconstruction
and data extraction are emphasized while robustness
against malicious attacks is not considered [23].

RDH-EI is useful in many applications [8], [9], [10], [11],
[12], [13], [14], [15], [14], [17], [18], [19], [20], [21], [22]. For
example, in cloud storage as shown in Fig. 1, an image owner
may store images in the cloud. Before uploading the images,
the owner encrypts the contents to preserve privacy. Forman-
agement purposes, the cloud administrator can embed labels,
such as user information, timestamps and remarks, into the
ciphertexts. Therefore, labels are attached inside these cipher-
texts, and storage overheads can be saved. The embedded
information can also be extracted exactly by the administrator
or authorized users. Meanwhile, when an authorized user
downloads the encrypted image containing additional mes-
sage from the cloud, RDH-EI protocol also guarantees that the
original content can be losslessly recovered after decryption.

Emerging works on RDH-EI are reviewed in Section 2.
While most of the related works are applicable to uncom-
pressed images, this paper focuses on RDH in encrypted
JPEG bitstream, the most popular image format, aiming at
providing an RDH-EI approach with separable extraction
capability, high embedding capacity, and secure encryption.
We first propose an encryption scheme for enciphering JPEG
bitstreams. Based on JPEG encryption, a reversible data hid-
ingmethod is developed for service providers to embed addi-
tional bits. Finally, we propose an iterative algorithm to
recover the original image. In this work, lossless recovery is
required. Although JPEG encoding itself is lossy, users always
hope not to introduce further degradation to a JPEG image
while uploading. That iswhy lossless recovery is required.

Compared with our previous work of RDH-EI for JPEG bit-
streams [12], the present method has three contributions. First,
data extraction and image recovery can be separated, while
both features in [12] must be realized jointly. Second, a rear-
rangement and enciphering algorithm is proposed to avoid
leaking of image contents, making the present method securer
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than the previous JPEG encryption algorithm proposed in [12].
Third, an algorithm for compression and iterative recovery is
proposed to reversibly hide data into an encrypted bitstream.
As a result, a larger embedding payload is achieved. The rest of
the paper is organized as follows. Previous works related to
RDH-EI are surveyed in Section 2. The proposed system is
developed in Section 3. Section 4 provides experimental results
and analyses. The paper is concluded in Section 8.

2 RELATED WORKS

Generally, an RDH-EI framework has three parties, content
owner, data hider and recipient, as shown in Fig. 2. To pre-
serve privacy, the content owner encrypts an original image
using an encryption key, and uploads the encrypted copy to
a remote server. On the server side, the data hider embeds
additional messages into the encrypted image using an
embedding key to generate a marked version. The recipient
can losslessly recover the original image using the encryp-
tion key after downloading the marked version. There are
two different cases: both the data hider and recipient can
extract the hidden message; and only the recipient can
extract the message, hence two types of technique: separable
RDH-EI and joint RDH-EI.

2.1 Separable RDH-EI
The word separable means separating data extraction from
image recovery, i.e., additional messages can be extracted
directly from themarked encrypted imagewithout revealing

the image content. Only those who have the embedding key
can extract themessages from amarked encrypted image.

A separable RDH-EI method was first proposed in [13].
The data hider permutes and divides the encrypted pixels
into segments, and compresses several LSB-planes of each
segment to fewer bits using a pseudo-randomly generated
matrix. As a result, spare room in each segment is created to
accommodate additional messages. On the recipient side,
LSBs of each segment are estimated using the MSBs of the
neighboring pixels. After comparing the estimated bits with
the extracted vectors, the recipient can recover the original
contents. Since the additional message can be extracted
directly from LSBs of the encrypted images, data extraction
and image recovery are therefore separable. This method was
improved in [14] by selecting appropriate bitplanes in the
encrypted image, leading to a higher embedding capacity. In
[15], distributed source coding (DSC) is used to achieve sepa-
rable RDH-EI. The data hider compresses some selected bits
in the encrypted image to create room for the additional hid-
den message. In this method, the Slepian-Wolf encoder based
on low density parity check (LDPC) is used. With the DSC
based embedding, amuch higher capacity is obtained.

With a different idea, [16] creates room for embedded
data in a plaintext image by embedding LSBs of some pixels
into other pixels using traditional RDH for plaintext images.
The pre-processed image is then encrypted by the content
owner to construct an encrypted image. Positions of these
evacuated LSBs in the encrypted image are used to accom-
modate additional messages. A large payload, up to 0.5 bit-
per-pixel, can be achieved. Similarly, another method based
on estimation was proposed in [17], in which a large portion
of pixels are used to estimate the rest before encryption. Final
version of the encrypted image is formulated by concatenat-
ing the encrypted estimating errors with the encrypted pix-
els. On the server side, additional bits are embedded into the
encrypted image by modifying the estimation errors. In [18],
an RDH-EI method based on patch-level sparse representa-
tion was proposed to explore correlations between neighbor-
ing pixels. After self-embedding encoded residual errors
and a learned dictionary into the original image, the data
hider can embed more secret messages into the encrypted
image. Another RDH-EI approach was realized using histo-
gram shift and spatial permutation [19]. The method simul-
taneously prepares room before image encryption and hides
data into the encrypted image using histogram modification
based RDH. The separable methods proposed in [16], [17],
[18], [19], [20], [21] have high embedding rates and good
recovery capability. However, they all require extra RDH
operations before image encryption, thus contradict the very

Fig. 1. An example of RDH-EI application.

Fig. 2. General framework of RDH-EI.
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purpose of RDH-EI, since the extra operations are performed
to the plaintext rather than encrypted images.

There are also some interesting works based on commu-
tative encryption and data hiding [24], [25], [26], where com-
mutative means that the orders of encryption and data
hiding/extraction can be swapped. Although some have
separable features, commutative RDH is different from the
framework proposed in the present paper.

2.2 Joint RDH-EI
In joint RDH-EI, the additional message can only be extracted
by the recipient after image decryption, along with image
recovery,while the data hider cannot perform extraction.

A feasible method was first proposed in [8], in which the
content owner encrypts an original image using a stream
cipher, and the data hider embeds additional messages into
ciphertext blocks by flipping three least significant bits (LSB)
of half the pixels in each block.When extracting the additional
messages, the recipient decrypts themarked encrypted image
and generates two candidates for each block by flipping LSBs
again. Since the original block is much smoother than the
interfered, the embedded bits can be extracted and the origi-
nal image perfectly recovered. This joint RDH-EI method
depends on the size of each block. As long as the block size is
appropriately chosen, errors of extraction and recovery can be
avoided. This method was improved in [9] by exploiting
spatial correlation between neighboring blocks and using a
side-match algorithm to achieve a higher embedding rate.
The flipping based approach was further improved in [10], in
which multiple neighboring pixels in different locations are
used to reduce error rates in extraction and recovery.

Recently, a new joint RDH-EI method was proposed in
[11]. Data embedding is realized through a public key modu-
lationmechanism. On the recipient end, a two-class SVM clas-
sifier is designed to distinguish encrypted and non-encrypted
image patches. Consequently, the recipient can jointly extract
the additional messages and recover the original image. This
method provides a higher embedding capacity.

2.3 RDH-EI for JPEG Bitstream
As most RDH-EI methods are designed for uncompressed
spatial-domain images, [12] proposes an approach capable
of reversely hiding messages into encrypted JPEG bit-
streams. This scheme aims at encrypting a JPEG bitstream
into a properly organized structure and embedding addi-
tional messages into the encrypted bitstream by slight modi-
fications. During the bitstream encryption, all appended bits
of the Huffman codes are encrypted with a stream cipher,
and all Huffman codes are kept unchanged. After encryp-
tion, the file size is preserved, and the format is compliant
to common JPEG decoders. On the server side, the bitstream
of every other block is selected as a candidate. If all AC coef-
ficients of a candidate block are zero, the block is skipped.
Additional bits are then encoded by LDPC-based error cor-
rection codes (ECC), and embedded into the useful candi-
date bitstream by flipping the LSBs of the encrypted
appended bits of the AC coefficients in each candidate
block. On the recipient side, LSBs of the appended bits of
each candidate bitstream are flipped again to estimate the
additional bits using a predefined blocking artifact function

and an ECC decoder. Meanwhile, the original bitstream can
be losslessly recovered according to the extracted bits.

In [27] and [28], some interesting ideas of RDH were pro-
posed for JPEG images by combining image scrambling and
data embedding. By scrambling the JPEG structure, addi-
tional message is embedded into the encrypted bitstream.
However, in these methods data embedding must be com-
bined with image encryption, which is different from gen-
eral RDH-EI framework depicted in Fig. 2.

Limited by JPEG compression, large embedding capacity
cannot be achieved. In [12], about 750 bits are embedded
into the JPEG bitstream of a 512 " 512 grayscale image. The
joint RDH-EI method requires a combined data extraction
and image recovery. That may become a problem since the
database administrator cannot read the hidden messages
from the marked encrypted bitstream. As format compli-
ance is required in JPEG encryption [29], it is difficult to
design a secure encryption algorithm for JPEG. The algo-
rithm previously presented in [12] is not secure enough.
Analyses in [27] show that the principal structure of the
original image can be estimated from the encrypted bit-
stream if all Huffman codes are kept unchanged. In view of
these drawbacks, we provide a new encryption scheme for
JPEG bitstream, and propose a separable RDH-EI approach
for the encrypted bitstream. In the proposed method, data
extraction and image recovery are separated, higher embed-
ding capacity is achieved, and security of JPEG encryption
enhanced.

3 PROPOSED FRAMEWORK

The framework of the proposed method is depicted in
Fig. 3. The JPEG RDH-EI workflow includes three parties:
content owner, data hider, and recipient.

Given a JPEG bitstream and an encryption key, the content
owner generates a ciphertext bitstream after syntax parsing
and encryption. In the process, the file size is kept unchanged
and the format is compliant to common JPEGdecoders.

When a remote server receives the encrypted bitstream,
the data hider parses the bitstream and hides additional
messages in it using an embedding key. After the marked
encrypted bitstream is constructed, the file size and format
compliance are preserved. In this scheme, the server can
extract additional messages from the marked encrypted bit-
stream using the embedding key.

On the recipient side, the additional messages can also be
extracted from the received bitstream if the embedding key
is available. A recipient with only the encryption key can
view an approximate image by a direct decryption. If both
the encryption and embedding keys are available, the recip-
ient can losslessly recover the original bitstream after
decrypting the marked encrypted JPEG bitstream.

3.1 JPEG Encryption and Decryption
In this section, we develop an encryption/decryption algo-
rithm for baseline JPEG bitstreams. The encryption aims at
preservingfile size of the bitstream, avoiding leakage of image
contents, and keeping the encrypted bitstream compliant to
the common JPEG decoder. JPEG compliance here means an
encrypted bitstream with suffix “.jpg” or “.jpeg” can be
directly decoded by commonly-used JPEGdecoders [29].
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3.1.1 JPEG Encryption

Before encryption, the content owner parses the JPEG bit-
stream according to the simplified syntax of baseline [30], as
shown in Fig. 4. We consider the syntax for compression of
grayscale images. The JPEG format contains a start-of-image
(SOI) marker, a JPEG header, the entropy encoded data,
and an end-of-image (EOI) marker. The second layer from
the top in Fig. 4 indicates that the entropy encoded data con-
tains entropy-coded segments of all blocks. If a grayscale
image sized H " W can be divided into N non-overlapping
8 " 8 blocks, there would be N entropy-coded segments,
each corresponds to one block. The neighboring segments
are separated by the end-of-block (EOB) markers. We denote
each entropy-coded segment as ECSi i ¼ 1, 2; . . . ; N .

Each entropy-coded segment contains codes of DC and
AC coefficients, as shown in the third layer of Fig. 4. Denote
the codes of DC and AC coefficients in the ith segment as

DCC< i> andACC< i;j> , respectively, where i ¼ 1; 2; . . . ;
N and 0 $ j < 64.

In the fourth layer, both codes of DC and AC coefficients
contain Huffman code and appended bits. Let DCH< i>

and DCA< i> be the Huffman codes and appended bits for

DC coefficient,ACH<i;j> andACA<i;j> for AC coefficient,
respectively. Thus, each entropy-coded segment can be rep-
resented by

ECSi ¼ DCC<i> ; ACC<i;1> ; ACC<i;2> ; . . . ; EOB
! "

¼ DCH< i> ; DCA<i>
! "

; ACH<i;1> ;ACA<i;1>
! "

;

ACH<i;2> ; ACA<i;2>
! "

; . . . ; EOBg:

With an encryption key Kenc, the content owner pseudo-
randomly selects entropy-coded segments corresponding to
L blocks from the entropy encoded data, where 1 < L <
N . The encryption key Kenc is private to the content owner.
Since all DC coefficients are encoded by DPCM starting
from the first block, this block must be selected so that the
encrypted bitstream can be correctly decoded by a JPEG
decoder. Denote indexes of the selected L blocks as {Sð1Þ;
Sð2Þ; . . . ; SðkÞ; . . . ; SðLÞ}, and the remaining N – L blocks as
{Rð1Þ; Rð2Þ; . . . ; RðN ' LÞ}. Sð(Þ and Rð(Þ are selection func-
tions: Sð1Þ ¼ 1; 1 < SðkÞ < N ðk ¼ 2; 3; . . . ; LÞ, and 1 <
RðiÞ < N ði ¼ 1; 2; . . . ; N ' LÞ.

Next, the content owner generates a new bitstream
including an SOI marker, a new JPEG header, entropy-

Fig. 3. Framework of the proposed method.

Fig. 4. Simplified syntax of JPEG baseline. SOI, EOI and EOB stand for start-of-image, end-of-image and end-of-block respectively. Acronyms in the
parentheses are used in the discussion for brevity.
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coded segments of the selected L blocks, an EOI marker,
and padding bits. Two integers h and w, which are multiples
of eight and satisfy h" w ¼ 64L, are chosen to specify the
size of a new image. The new JPEG header is modified to
store the size. Compressed bits of the remaining N ' L
blocks are recomposed to construct the padding bits, whose
syntax is illustrated in Fig. 5. These padding bits include
two parts. The first part consists of the entropy code of DC
coefficient and Huffman codes of all AC coefficients in the
remaining blocks. The second part consists of the appended
bits of all AC coefficients in the remaining blocks. We
denote the padding bits as

P ¼ CC; APf g
where

CC ¼ ffDCC<R 1ð Þ> ; ACH<R 1ð Þ;1> ; ACH<R 1ð Þ;2> ; . . . ; EOBg; . . . ;

fDCC<R N'Lð Þ> ; ACH<R N'Lð Þ;1> ;

ACH<R N'Lð Þ;2> ; . . . ; EOBgg

AP ¼ ffACA<R 1ð Þ;1> ; ACA<R 1ð Þ;2> ; . . .g; . . . ;

fACA<R N'Lð Þ;1> ; ACA<R N'Lð Þ;2> ; . . .gg

As a result, when modifying AP to accommodate addi-
tional messages by a data hider, no Huffman codes are
destroyed. This is why ACHs are separated from ACAs to
make sure there is no Huffman code inside AP.

Assume there are M bits in the padding data and
P ¼ ½p1; p2; . . . ; pM *. With the encryption key Kenc again,
the content owner generates a key stream K ¼ ½k1; k2; . . . ;
kM * using a stream cipher algorithm such as RC4 and SEAL.
The padding bits are then encrypted to P0 ¼ ½p10; p20; . . . ;
pM 0*where

pi
0 ¼ pi + ki; 1 $ i $ M (1)

In the same way, the content owner also encrypts all
appended bits of the DC and AC Huffman codes inside the
L selected segments.

Next, we embed the encrypted padding bits P0 and the
parameters H and W into the reserved application seg-
ments, marked as APPn in the JPEG header, in the same
way as [32]. After the processing, an encrypted JPEG bit-
stream is generated. The encrypted bitstream has the same
amount of data as the original, and is compliant to the JPEG
standard. As all bits between SOI and EOI are strictly

structured following the JPEG syntax, the bitstream can be
decoded to an image sized h " w using commonly-used
JPEG decoders.

An example of the proposed JPEG encryption is shown
in Fig. 6, in which (a) is a 512 " 512 image Peppers decoded
from a plaintext JPEG bitstream, and (b) a 256 " 256 image
decoded from an encrypted JPEG bitstream. In Fig. 6b,
contents of the original image cannot be recognized for
three reasons. First, the bitstream segments of L blocks are
randomly selected from the original bitstream. Second,
since the DC coefficients are represented by differential
values, decoding DC codes in the selected segments gives
results different from the original DC values. Third, as the
appended bits of all coefficients are encrypted by a stream
cipher, the decoded AC coefficients are different from the
original values.

3.1.2 JPEG Decryption

When deciphering the encrypted bitstream, the new JPEG
header and entropy encoded data can be extracted by
parsing the bitstream. Meanwhile, the padding bits
P0 ¼ ½p10; p20; . . . ; pM 0* can be extracted from the reserved
application segments marked as APPn in the JPEG header.
With the encryption key Kenc, the appended bits of L
selected entropy-coded segments and the padding bits
P ¼ fCC; APg can be deciphered in the same way as (1).

Fig. 5. Syntax of the new JPEG bitstream.

Fig. 6. Encryption of JPEG bitstream: (a) image decoded from the plain-
text JPEG bitstream; (b) image decoded from the encrypted bitstream.
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From the JPEGheader, we extract theDCandACHuffman
tables. With these tables, we parse the Huffman codes in CC
and the appended bits inAP to reconstruct the N – L remain-
ing entropy-coded segments ECSu; u ¼ Rð1Þ; Rð2Þ; . . . ;
RðN ' LÞ. Meanwhile, the L selected entropy-coded seg-
ments ECSv ðv ¼ Sð1Þ; Sð2Þ; . . . ; SðLÞÞ are extracted from
the new entropy encoded data. With the encryption keyKenc,
the original indexes of the selected blocks can be recovered.

After that, the original JPEG bitstream is reconstructed
containing SOI, the JPEG header, the decrypted entropy-
coded segments, and EOI. The selected ECSu ðu ¼ Rð1Þ;
Rð2Þ; . . . ; RðN ' LÞÞ and the remaining ECSv ðv ¼ Sð1Þ;
Sð2Þ; . . . ; SðLÞÞ are sequentially put back to the original
positions, and the JPEG header is modified to restore the
original image size H " W. The decryption procedure is
depicted in Fig. 7.

3.2 Data Hiding in Encrypted JPEG Bitstream
Based on the JPEG encryption algorithm, the content owner
enciphers the JPEG bitstream and uploads the encrypted
copy to a remote server. On the server side, the data hider
extracts the encrypted padding bits from the header and

embeds an additional message M into the encrypted pad-
ding bits. The procedure is depicted in Fig. 8. We denote all
encrypted AC appended bits inside the encrypted padding
bits as A, i.e., encrypted bits of AP, which contains m bits.
Although it is difficult to identify the value of m directly
from the encrypted padding bits, two solutions are provided
at the end of this section.

The data hider evenly divides the binary vector A into s
groups fA1; A2; . . . ; Asg, where s ¼ m=n; n ¼ b(e, b is a
positive integer, and e is the average number of appended
bits of all AC coefficients inside each block. The value of e is
identified by parsing all AC appended bits in L selected
entropy-coded segments. Assuming there are ma such bits,
the value of e is calculated by e ¼ ma=L.

Subsequently, the data hider constructs a k" n binary
matrixH by

H ¼ ½Ik"k;Qk"r* (2)

where Q is a pseudo-randomly generated binary matrix,
and r ¼ n' k. Many algorithms like RC4 and SEAL can be
used to generateQ.

For each group At ðt ¼ 1; 2; . . . ; sÞ, the data hider fur-
ther computes

Fig. 7. Procedure of JPEG decryption.

Fig. 8. Procedure of data embedding.
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Btð1Þ;Btð2Þ; :::;BtðkÞ½ *T ¼ H ( Atð1Þ;Atð2Þ; :::;AtðnÞ½ *T (3)

in which all calculations are binary arithmetic. Thus, each
group At containing n bits is compressed to a vector Bi with
k bits. After compressing all groups from m bits to ks bits,
the additional message M containing m ' ks bits are
appended to generate

Pm ¼ CC; B1; B2; . . . ; Bs; Mf gf g:

The structure is depicted in Fig. 8.
With an embedding key Kemb, the data hider shuffles Pm

to produce a sequence E. These bits are then embedded into
the reserved application segments marked as APPn in
JPEG header. This way, a marked encrypted JPEG bitstream
containing additional messages is generated.

To extract the additional messages, one can reshuffle the
padding bits of the marked encrypted bitstream using the
embedding key Kemb, and obtain the additional messages
by extracting the last m' ks bits. Since extraction is done in
the encrypted domain without revealing image contents,
the proposed RDH-EI method is therefore separated from
image recovery.

Next, we explain how the parameter m is estimated.
There are two possible solutions. A simple solution is to
transmit the parameter m along with the encrypted JPEG
bitstream, by embedding it inside the reserved application
segments marked as APPn in JPEG header. Another is to
estimate the length of encrypted padding bits. If there are ns
bits in L selected entropy-coded segments and nr bits in
the N ' L remaining segments, m can be estimated by
m ¼ ½!(ðnr=nsÞ(ma*, where [(] is a rounding operator, and l
a scaling factor (0 < ! < 1) used to avoid modifying the
encrypted Huffman codes during data hiding.

3.3 Iterative Recovery of Original Image
On the recipient side, the marked encrypted JPEG bitstream
can be directly decoded by the JPEG decoder to construct
an encrypted image of a smaller size. With the embedding
key Kenc, the recipient can parse and decipher the marked
encrypted JPEG bitstream using the proposed JPEG decryp-
tion algorithm described in Section 3.1. Since only the AC
appended bits of the remaining entropy-coded segments
were modified in data hiding, an approximate image with
reduced quality can be reconstructed after decryption.

With both the encryption and embedding keys, the recip-
ient can losslessly recover the original JPEG image.
Although the compression algorithm in (3) is irreversible,
we have several solutions to identify the original bits
according to the changes of blocking artifacts. A flowchart
of the recovery is shown in Fig. 9.

The recipient first parses and extracts the encrypted pad-
ding bits E from the marked encrypted JPEG bitstream and
reshuffles E to restore Pm using the embedding key Kemb,
where

Pm ¼ CC; B1; B2; . . . ; Bs; Mf gf g:

According to the binary matrixH, the recipient generates
a binary matrixG,

G ¼ ½QT
k"r;Ir"r* (4)

where r ¼ n' k and n ¼ be. For each group Bt, the recipi-
ent calculates

At
ðcÞð1Þ;At

ðcÞð2Þ; :::;At
ðcÞðnÞ

h i

¼ Btð1Þ;Btð2Þ; :::;BtðkÞ; 0; :::0½ * þ a1; a2; :::; ar½ * (G
(5)

where ½a1; a2; . . . ; ar* is an arbitrary binary vector, and AðcÞ
i

the 2r possible candidates for each group At, t ¼ 1; 2; . . . ;
s, and c ¼ 1; 2; . . . ; 2r.

With the encryption key Kenc, the candidate vectors AðcÞ
t

are decrypted to plaintext candidates DðcÞ
t using the stream

cipher algorithm. According to the syntax of the recom-
posed JPEG bitstream, lossless recovery is equivalent to
identifying the suitable one from the 2r possible plaintext
candidates to recover the padding bits.

Assume that the AC appended bits in each candidate

DðcÞ
t belongs to several entropy-encoded segments, i.e.,

DðcÞ
t ¼ fF; ACAP<t1> ; ACAP<t2> ; . . . ; ACAP<tl> ; Fg:

Here F stands for the fragment AC appended bits of a seg-
ment, and ACAP<ta> for the candidate of all AC
appended bits in the tath remaining segment, t ¼ 1; 2; . . . ;
s; ta 2 Rð1Þ; Rð2Þ; . . . ; RðN ' LÞ, and a ¼ 1; 2; . . . ; l. The
value of l is identified by parsing the AC Huffman codes in
the decrypted padding bits. Meanwhile,

ACAP< ta> ¼ fACA< ta;1> ;ACA<ta;2> ; . . .g

where ACA<ta;j> is a candidate of appended bits, and
0 $ j < 64.

Thus, 2r candidates for l entropy-coded segments can be
generated,

Fig. 9. Flow chart of iterative recovery.
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ECSðcÞ
ta ¼ fDCC<ta> ; ACH<ta;1> ; ACA< ta;2> ; . . . ; EOBg

Accordingly, 2r candidate pixel blocks {PBðcÞ
t1 ; PBðcÞ

t2 ; . . . ;

PBðcÞ
tl } are constructed by entropy decoding {ECSðcÞ

t1 ;

ECSðcÞ
t2 ; . . . ;ECSðcÞ

tl }.
Next, the recipient identifies the suitable candidate DðbtÞ

t

from DðcÞ
t (c ¼ 1; 2; . . . ; 2r) by calculating the blocking arti-

facts of the candidate blocks, where

bt ¼ argmin
c

Xtl

a¼t1

fðPBa
ðcÞÞ (6)

and f is the blocking artifact function,

fðXÞ ¼
X8

i¼1

jXð1;iÞ 'UPð8;iÞjþ jXði; 1Þ ' LFði; 8Þj: (7)

The blocking artifact function is illustrated in Fig. 10, in
which X is the present block, UP and LF are the up and left
neighboring blocks. We use the up and left blocks when cal-
culating blocking artifact as blocks are constructed orderly
from left-to-right and top-to-bottom, and only these two
blocks are available in the first round of recovery.

The reason we use this function as the criteria of recovery
is that data embedding by coefficient modification always
increases blocking artifacts [12]. It should be noted that
over-smooth in the recovered image may occur when a
small parameter n is used during embedding. As long as n
is large, i.e., enough blocks are used together to evaluate the
blocking artifacts, the over-smooth effect can be avoided.

After sequentially processing all groups {B1; B2; . . . ; Bs},

suitable candidates {D1
ðb1Þ; D2

ðb2Þ; . . . ; Ds
ðbsÞ} constituting

updated padding bits are identified. This way, a new image I0
is constructed by decoding the updated JPEG bitstream. The
image I0 has better quality than the directly deciphered image.

The first round of recovery using blocking artifact func-
tion in (7) may be inaccurate. In the next stage, the recipient
iteratively refines the updated JPEG bitstream to losslessly
recover the original image, using contents in the existing
image as a reference. With the updated padding bits and
the candidates DðcÞ

t ðc ¼ 1; 2; . . . ; 2rÞ, the recipient itera-
tively finds the best candidates using (6) and (8), in which
the blocking artifact function f is different from (7).

fðXÞ ¼
X8

i¼1

jXð1; iÞ 'UPð8; iÞjþ jXði; 1Þ ' LFði; 8Þj

þ jXð8; iÞ 'DWð1; iÞjþ jXði; 8Þ ' RTði; 1Þj
(8)

As shown in Fig. 10, UP, LF, DW and RT are neighboring
blocks around the present block X.

In each iterative step, the recipient updates the bitstream
and generates a refined image. The generated image is
compared with the resulting image of the previous round.
The iteration runs until no difference is found. This way,
the recipient can losslessly recover the original JPEG image.

4 EXPERIMENTAL RESULTS AND ANALYSIS

To verify the proposed method, we use a set of grayscale
images sized 512 " 512, and compress them to JPEG bit-
streamswith different quality factors. The encrypted padding
bits, and the parametersm,H, andW are hidden into the JPEG
header. Let a ¼ L=N be the ratio of selected blocks.

Fig. 10. Blocking artifacts.

Fig. 11. RDH-EI in the bitstreams corresponding to Lena and Boat: (a)
original JPEG images, (b) encrypted images, (c) directly decrypted
images, and (d) losslessly recovered images.
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An example is given in Fig. 11, in which (a) shows the
original images Lena and Boat compressed with a quality
factor 80. After encrypting the bitstreams with an encryp-
tion keyKenc and the parameter a ¼ 0:25, format-compliant
bitstreams are generated. The encrypted bitstreams can be
decoded to smaller images sized 256 " 256 by a JPEG
decoder, which are shown in Fig. 11b. The encrypted bit-
streams have the same lengths as the original. Secret mes-
sages containing 1,023 bits are embedded into each
encrypted bitstream using an embedding key Kemb and
parameters b ¼ 9 and r ¼ 3. After data hiding, the marked
encrypted JPEG bitstreams can still be directly decoded to
images by JPEG decoder. On the recipient side, additional
messages can be extracted without any errors if the key
Kemb is available. Approximate images can be generated by
decrypting the encrypted bitstream containing additional
message using the key Kenc. Fig. 11c shows the approximate
images, with PSNR being 21.7 and 20.4 dB, respectively.
When both keys are available, the original bitstreams can be
recovered without loss. Fig. 11d shows the losslessly recov-
ered images after three iterations.

In Tables 1, 2, and 3, we show the embedding payloads
Ce and PSNR of the recovered images, using images Lena,
Baboon and Texmos. The PSNR value þ1 means lossless
recovery. We use a fixed ratio a ¼ 0:25, i.e., messages with
1,540 bits are embedded into the encrypted bitstream of
Lenawith b ¼ 10 and r ¼ 5. The experimental results show
that the original images can be losslessly recovered if b is
not too small and r is not too large. The image Texmos is
shown in Fig. 12, indicating that the proposed method is
also applicable to natural images with rich textures.

In real applications, parameters b and r can be chosen
empirically in the same way as the previous RDH-EI works
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. For
different types of images, some images are used for training.
For example, we arbitrarily choose 100 natural images sized
512 " 512, and perform embedding using the proposed
method. Table 4 shows the used empirical parameters, with
which the original JPEG image can be losslessly recovered.

To find the achievable payload, we compare the pro-
posed methods with [8] and [9] designed for uncompressed
images. Experimental results listed in Table 5 show that
payloads of the proposed method for JPEG are close to [8]
and [9]. We mainly compare the proposed method with [12]
that is also an RDH-EI for encrypted JPEG bitstream.
Results given in Table 5 indicate that the proposed method
has much larger achievable payloads than that of [12]. We
arbitrarily choose 50 JPEG images to embed 750 bits into
each one using both methods. Average PSNR obtained with
the proposed method is about 7 dB smaller than [12].
Although quality of the directly decrypted image in [12] is
better than the proposed method, better PSNR in [12] is
achieved by sacrificing security.

Since a is the ratio of the selected blocks, a smaller a leads
to more padding bits used to carry more secret message.
Table 6 shows embedding payload corresponding to

TABLE 1
PSNR (dB) and Payload Ce (bits) of Lena

r
b

9 10 11 12

1 þ1, 341 þ1, 308 þ1, 279 þ1, 259
2 þ1, 682 þ1, 616 þ1, 558 þ1, 518
3 þ1, 1,023 53.6, 924 þ1, 837 þ1, 777
4 þ1, 1,364 þ1, 1,232 þ1, 1,116 þ1, 1,036

TABLE 2
PSNR (dB) and Payload Ce (Bits) of Baboon

r
b

9 10 11 12

1 43.1, 341 38.2, 307 þ1, 279 þ1, 256
2 þ1, 682 þ1, 614 þ1, 558 þ1, 512
3 40.2, 1,023 42, 921 38.3, 837 þ1, 768
4 35.1, 1,364 31.6, 1,228 33.3, 1,116 34.7, 1,024

TABLE 3
PSNR (dB) and Payload Ce (Bits) Texmos

r
b

9 10 11 12

1 þ1, 341 þ1, 307 þ1, 279 þ1, 256
2 37.8, 682 þ1, 614 þ1, 558 þ1, 512
3 32.5, 1,023 35.4, 921 þ1, 837 þ1, 768
4 34.4, 1,364 31.3, 1,228 þ1, 1,116 þ1, 1,024

Fig. 12. The image Texmos.

TABLE 4
Empirical Parameters to Achieve Lossless Recovery

r 1 2 3 4 5
b 15 18 22 20 22

TABLE 5
Comparison of Payloads (Bits)

Images [8] [9] [12] Proposed

Lena 1,024 1,024 750 1,364
Baboon 256 334 750 768
Man 655 1,024 750 1,368
Sailboat 655 1,024 750 1,364

TABLE 6
Payloads Corresponding to Different Selection Ratio a

a 0.0005 0.042 0.083 0.125 0.167 0.208 0.250

Lena 1,026 981 939 897 855 810 768
Peppers 1,026 981 939 897 855 810 768
Airplane 1,023 984 939 897 852 810 768
Man 1,023 981 939 897 855 810 768
Boats 1,023 981 936 894 852 810 768
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different values of a, in which fixed parameter values r ¼ 3
and b ¼ 12 are used to ensure lossless recovery. Experi-
mental results indicate that a larger embedding payload can
be achieved with a smaller a.

Quality factor used for scaling the default quantization
table is an important factor in JPEG compression, and it also
impacts embedding payloads. We use the popular tool IJG
[31] to scale the quantization table as suggested in the JPEG
standard [30]. In the standard, the quality factor ranges
from 0 to 100, and the default is 50. We use a ¼ 0:25, differ-
ent values of r, and corresponding values of b to achieve
lossless recovery. These parameters correspond to different
payloads. Fig. 13 shows relations between the payload and
the quality factor ranging from 10 to 90, based on Lena, Pep-
pers and Texmos. Generally, higher payloads can be
achieved with larger quality factors or larger values of r.

To check the convergence property of the iterative recov-
ery, we conduct a set of experiments. A total of 1,000 arbi-
trary images in Bossbase1.01 [33] are used, with r ¼ 1,
a ¼ 0:25, different b, and different quality factors Q. Histo-
grams in Fig. 14 show that, in all experiments, the required
number of iterative rounds is no more than 5. Table 7 shows
the average convergence speed of 1,000 images using differ-
ent parameters. In general, several hundreds of seconds are
needed to recover each image. When b gets smaller, longer
time is required.

We also evaluate relations between embedding payloads
and image resolutions. Fixed parameters r ¼ 3 and b ¼ 12
are used to implement the proposed method to achieve loss-
less recovery. We use a parameter S to represent the image

resolution, and let the image size be 2S=2 " 2S=2. Fig. 15
shows that the achievable payload increases as the image
gets larger. Resolution of an original JPEG image should be
larger than 16 " 16. Otherwise, few messages can be embed-
ded into the encrypted image.

The proposed system is securer than [12]. In [12], the
quantization tables and all appended bits are encrypted,

Fig. 13. Payload versus quality factor.

Fig. 14. Convergence of iterative recovery.
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while all Huffman codes are unchanged. If an adversary
uses all Huffman codes and sets all appended bits to zero, a
contour of the original image can be revealed. While in the
proposed method, only part of the bitstream segments are
randomly selected to construct a smaller sized JPEG image.
If a is small, most of the entropy-coded segments are rear-
ranged to the padding bits that are further encrypted with a
stream cipher. Thus, the adversary cannot reconstruct a
contour of the original image with limited Huffman codes.
As an example, we use [12] and the proposed method to
encrypt the original JPEG images Baboon and Peppers, both
sized 512 " 512. The encrypted images constructed by [12]
are sized 512 " 512, while the encrypted images by the pro-
posed method are sized 256 " 256. Fig. 16a shows revealed
contours by using all Huffman codes in the encrypted bit-
stream of [12]. In Fig. 16b, no contours are revealed, indicat-
ing that the proposed method is much securer than [12].

Besides, the proposed method is also secure against
ciphertext-only attacks. Two parts are included in the pro-
posed encryption, i.e., block selection and stream cipher. L
entropy-coded segments are pseudo-randomly selected
from the JPEG bitstream, in which the first entropy-coded
segment must be selected. After permuting the L ' 1 seg-
ments, a new entropy encoded bitstream is constructed.
When L is large enough, it is difficult for an adversary to
find the original orders from CL'1

N'1 ( ðL' 1Þ! possibilities.
On the other hand, all appended bits in the L selected seg-
ments and all bits in the remaining N – L segments are
encrypted by stream cipher. Thus, an adversary is unable to
break the original bits and reconstruct the original image as
long as the encryption key is long enough, e.g., 128 bits for
RC4. We create images sized 256 " 256, 512 " 512 and
1,024 " 1,024 by sampling or interpolating the original Lena.
After JPEG compressing these images using a quality factor
80, lengths of the compressed bits of these images are
57,074, 213,435 and 435,620 bits respectively. The results

show that it is difficult for an adversary to break so many
bits using the brute-force attack.

Denote average complexity of deciphering and decoding
the bitstream of each block as Tc, that of bitstream decoding
for each block as Tb, and that of blocking artifact calculation
as Ta. We compare recovery complexities of the proposed
method with that of [12]. In [12], the procedure of recovery
includes bitstream deciphering, bitstream decoding, and
blocking artifact calculation. As a result, average complexity
of recovering one block is approximately Tc þ Tb þ Ta. In the
proposed method, 2r possible candidates are first calculated
using (4). For each solution, bitstream deciphering, bit-
stream decoding, and blocking artifact calculation are used
to find the best solution. After that, an iterative algorithm is
used to complete the recovery, with a procedure close to the
first round. As a result, average complexity of recovering
one block is approximately 2r ( t ( ðTc þ Tb þ TaÞ, where t is
the number of iterative rounds. Therefore, complexity of the
proposed method for recovering one block is 2r ( t times
that of [12]. Since r - 1 and t - 1, complexity of the pro-
posed method is higher than that of the previous work. This
is the cost paid for separated operations, higher payload
and better security.

5 CONCLUSION

This paper proposes a separable reversible data hiding
scheme for the encrypted JPEG bitstream. A JPEG encryp-
tion and decryption algorithm is developed to hide the con-
tent of an original image. When the server receives the
enciphered bitstream, a data hider can embed additional
messages into the encrypted copy by compressing the pad-
ding bits of the bitstream. With an iterative recovery
method based on blocking artifacts, the recipient can loss-
lessly recover the original bitstream. The proposed method
provides larger embedding capacity than the previous
approach. It is separable because anyone who has the
embedding key can extract the additional message from the
marked encrypted bitstream without revealing the original
content of the JPEG image.

TABLE 7
Average Convergence Speed Corresponding to Different

Parameters (in Seconds)

Q b

7 10 13

70 432.5 365.6 338.4
90 466.8 377.9 236.7

Fig. 15. Payload versus image resolution.

Fig. 16. Security analyses using encrypted bitstreams of Baboon and
Peppers: (a) constructed 512 " 512 images by attacking [12], and (b)
constructed 256 " 256 images by attacking the proposed method.
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The proposed method also offers better security than the
previous work. A new JPEG bitstream corresponding to a
smaller sized image is constructed. Therefore, information
leakage of the original content, e.g., contour of an image, can
be avoided. The procedure is realized by rearranging some
entropy-coded segments to generate the padding bits. These
bits are embedded into the reserved segments labeled by
APPn in the JPEG header. The encrypted bitstream can still
be decoded by the commonly-used decoders, e.g., the decoder
incorporated in the Windows operating system. Meanwhile,
the amount of data of the bitstream is unchanged.
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